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• We use polarized spatial frequency domain imaging (pSFDI) to extract fiber
orientation ( ) and concentration ( ) from optical anisotropy.

An Integrated Opto-Mechanical System for Quantification of Dynamic 
Microstructure and Mechanics of Heart Valve Leaflets
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Figure 4. (a) Image of the system, (b) optical anisotropy of example
fiber at = 90°, and (c) extraction of and .fiber ( )fiber x, y ( )fiber x, y

Figure 5. (a) Image of the tendon sample with ROI in red. (b) The average optical response over
the ROI at various strains, and (c) fiber orientation ( – ) and concentration maps over the sample.
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Figure 6. (a) The mounted leaflet tissue showing ROI, (b) fiber orientation ( – ) and concentration
maps and (c) fiber distribution histograms over the ROI with Bimodal Von-Mises fit at various loads.
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• Collagen is an abundant protein in the body
and the primary constituent of tissues such as
tendon, skin, and heart valve (HV) leaflets [1].

• On sub-fiber scales, collagen exhibits a
nested organization (Fig. 1a), but on a tissue
scale, fibers form complex architectures
(Fig. 1b) to support tissue function.

• Due to the tensile strength of the individual
fibers, these collagen fiber architectures
(CFAs) govern the mechanical behavior in
connective tissues such as HV leaflets [3].
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Figure 1. (a) Diagram of nested fiber[1]

and (b) image of example CFA [2].

• CFAs exhibit a dynamic response to applied mechanical loading due
to deformations and rotations of the internal collagen fibers (Fig. 2).

Figure 2. Schematic diagrams depicting (a) an HV leaflet with representative CFA, (b) biaxial 
mechanical loading of HV sample, and (c) reorientation of the CFA under various load magnitudes.
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• CFAs can be degraded in HV diseases such as stenosis or regurgitation,
further altering the mechanical behavior of the valve tissues and
impairing function [4].

• The quantification of dynamic CFA in HV leaflets can also be utilized to
improve predictions of leaflet mechanics through development of
structurally-based constitutive models of leaflet mechanics (Fig 8a).

• These material models can be applied to improve fidelity of computational
models for examining how diseases impair valvular function (Fig. 8b).

Figure 8. (a) The development of a structurally-based constitutive model to describe leaflet
mechanical behavior applied in (b) computational models of the valvular function and closure [6].

• This integrated opto-mechanical
system renders a novel and
valuable tool for assessing the
microstructural similarity of the
HV replacement biomaterials
compared to the native tissues.

• By comparing the dynamic CFA
between healthy leaflets and
valve replacement biomaterials,
an improved understanding of
functional distinctions can be
gained (Fig. 7).
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Figure 7. Depictions of CFA equivalence in native
and replacement HV materials to promote
functional mechanical similarity between the
healthy and replaced valve [1].
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• The motivation for this study is
the lack of understanding of how
the dynamic CFA governs tissue
mechanics in HV leaflets. Our
objective is to develop a device
to investigate the relationship
between CFA and mechanics to
shed light on how disease-driven
CFA changes can affect function.
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Figure 3. Schematic diagrams depicting the
deterministic relationship between the CFA and the
mechanical behavior of the HV leaflet tissues [5].
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