

An Integrated Opto-Mechanical System for Quantification of Dynamic **Microstructure and Mechanics of Heart Valve Leaflets**

Samuel Jett¹, Zachary V. Schuermann¹, Arshid Mir, M.D.², Harold M. Burkhart, M.D.³, and Chung-Hao Lee, Ph.D.^{1, 4}

The University of Oklahoma

- Collagen is an abundant protein in the body tendon, skin, and heart valve (HV) leaflets ^[1].
- On sub-fiber scales, collagen exhibits a nested organization (Fig. 1a), but on a tissue scale, fibers form complex architectures (**Fig. 1b**) to support tissue function.
- Due to the tensile strength of the individual connective tissues such as HV leaflets ^[3].

³ Division of Cardiothoracic Surgery, **Department of Surgery**, The University of Oklahoma Health Sciences Center

Applications in the Clinical Setting

- This integrated opto-mechanical system renders a novel and valuable tool for assessing the microstructural similarity of the HV replacement biomaterials compared to the native tissues. By comparing the *dynamic* CFA
- between healthy leaflets and valve replacement biomaterials, an improved understanding of functional distinctions can be gained (Fig. 7).

Figure 8. (a) The development of a structurally-based constitutive model to describe leaflet mechanical behavior applied in (b) computational models of the valvular function and closure ^[6].

Support from funds provided by the School of AME at OU and the AHA Scientist Development Grant (16SDG2776014) are gratefully acknowledged.

[1] Lin, Kaili, et al. Advanced Functional Materials (2018) 1804943. [2] Scipioni, L. "Principles and applications of helium ion microscopy." (2009). [3] Sherman, V. "The materials science of collagen" JMBBM (2015) 52: 22-50 [4] Hutson, H, et al. "Calcific Aortic Valve Disease is Associated with Layer-Specific Alterations in Collagen Architecture" *PLoS One* (2016) 11(9): [5] Oomen, P.J.A. et al., Acta Biomaterialia (2016) 21:161-169 [6] Lee, Chung-Hao, et al. International Conference on Functional Imaging and Modeling of the Heart. Springer, Berlin, Heidelberg, 2013.

⁴ Institute for Biomedical Engineering, Science and Technology (IBEST), The University of Oklahoma

functional mechanical similarity between the healthy and replaced valve ^[1].

Future Research Extensions

The quantification of dynamic CFA in HV leaflets can also be utilized to improve predictions of leaflet mechanics through development of structurally-based constitutive models of leaflet mechanics (Fig 8a).

These material models can be applied to improve fidelity of computational models for examining how diseases impair valvular function (Fig. 8b).

Acknowledgments

References